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ABSTRACT

Climate indicators related to Long Island Sound (LIS) water and air temperature variability were in-

vestigated. The Pacific decadal oscillation (PDO) and east Pacific/North Pacific (EP/NP) patterns are found to

be strongly correlated with LIS air temperature anomalies during most seasons, especially during the winter.

Additionally, the winter EP/NP index is strongly correlated with subsequent spring and summer LIS water

temperature anomalies, potentially rendering the EP/NP index useful in extended LIS water temperature

outlooks. Such lagged relationships are found to be related largely to the decorrelation time scale of seasonal

water temperature anomalies. The atmospheric circulation pattern associated with anomalous LIS water

temperature conditions is consistent with atmospheric Rossby wave trains emanating from the western

equatorial Pacific. The EP/NP index has a characteristic time scale of approximately 5 to 10 years and such

fluctuations are termed the quasi-decadal mode, the mode identified as varying coherently with LIS air and

water temperature anomalies. Apparent PDO and EP/NP regime shifts in 1997 are found to coincide with a

LIS water temperature regime shift. This result suggests that not all LIS warming experienced during recent

decades is solely due to anthropogenic causes but rather is to some extent a result of natural variability. The

results from this study provide a useful framework for both seasonal and decadal prediction of LIS water

temperature variability.

1. Introduction

It has been identified that modes of climate variability

impact coastal water temperature variability. The im-

pact of North Pacific sea surface temperature (SST)

patterns such as the Pacific decadal oscillation (PDO;

Mantua et al. 1997) and North Pacific Gyre Oscillation

(NPGO; Di Lorenzo et al. 2008) on coastal water tem-

perature variability across the U.S. West Coast is well

established (Cloern et al. 2010). However, the influence

of the PDO on eastern U.S. coastal waters is less clear

because of uncertainty in how the PDO, a Pacific Ocean

SST pattern, can influence atmospheric circulation pat-

terns (Newman et al. 2016) that would act as an atmo-

spheric bridge connecting PDO variability to water

temperature variability across remote regions. Recent

work by Pershing et al. (2015) showed that rapid

warming in the Gulf of Maine over the past decade was

related to the Atlantic multidecadal oscillation (AMO;

Kerr 2000), PDO, and Gulf Stream position fluctuations

(Taylor 1995). Although Pershing et al. (2015) related

changes in Gulf of Maine water temperature to the

PDO, it is unknown how the PDO influences water

temperature in other regions across the U.S. Northeast.

In particular, the Long Island Sound (LIS) estuary is

semienclosed by land and relatively shallow and there-

fore LIS water temperature may be less influenced by

changes in the Gulf Stream position than Gulf of Maine

water temperature. Thus, large-scale climate patterns

important to Gulf of Maine water temperature vari-

ability may not be important to LIS water temperature

variability. An additional study is therefore needed toCorresponding author : Justin A. Schulte, jschulte@stevens.edu
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identify the large-scale climate patterns that influence

LIS water temperature variability and to quantify the

strength of such influences.

It is well documented that the mean global tempera-

ture has been rising but the warming is not spatially

uniform. The rapid warming in the Gulf of Maine over

the past decade exemplifies the role of climate modes

such as the AMO and PDO in modulating regional

temperature trends. Anomalous tropical forcing of the

atmosphere consistent with a negative PDO has been

shown to be related to hiatuses in global mean tempera-

ture trends (Trenberth et al. 2014). The impacts of these

climate modes on temperature variability underscore the

need to adopt seasonal temperature outlooks that in-

corporate the current behaviors of prominent climate

oscillation patterns.

Other important North Pacific teleconnection pat-

terns include the east Pacific/North Pacific (EP/NP)

pattern, which has been shown to be strongly related to

air temperature across the United States. As shown by

Schulte and Lee (2017), U.S. air temperature relation-

ships with the EP/NP index have been increasing since

the 1950s. Such nonstationary relationships underscore

the need to evaluate the impacts of climate modes on

LIS water temperature in a nonstationary framework.

There also exists other well-known prominent modes

of climate variability such as theNorthAtlanticOscillation

(NAO; Hurrell 1995), Arctic Oscillation (AO; Thompson

andWallace 1998), NPGO(DiLorenzo et al. 2008), andEl

Niño–Southern Oscillation (ENSO). Schulte and Lee

(2017) showed that the AO is not as well correlated

with U.S. Northeast air temperature as the EP/NP index

and Schulte et al. (2016) found no relationship between

ENSO and air temperature across the mid-Atlantic re-

gion of the United States. These studies suggest that the

AO and ENSO may not be important temperature in-

dicators for the U.S. Northeast and the LIS.

Here we examined the hypothesis that LIS air and

water temperature variability is influenced by North

Pacific climate phenomena. In particular, we focus on

the EP/NP pattern’s impact on LIS water temperature

variability because of its previously identified dominant

influence on U.S. Northeast air temperature variability

(Schulte and Lee 2017).

2. Data

Monthly-averaged water temperature data from 1979

to 2013 were obtained from a 34-yr hindcast generated

from the New York Harbor Observing and Prediction

System (NYHOPS; Georgas et al. 2016, and links therein).

Themodel’s ability to reproduce historical observed water

temperature data was evaluated by Georgas et al. (2016),

who showed that the NYHOPS model can skillfully re-

produce historical water temperature data provided by the

Connecticut Department of Energy and Environmental

Protection and New York City Department of Environ-

mental Protection. As shown by Georgas et al. (2016), the

root-mean-square error calculated between NYHOPS

simulated and observed water temperature is 1.08C, and a

strong linear relationship between the simulated and ob-

served water temperature exists. The reason for using the

NYHOPS water temperature data is that observed data

are sparse both spatially and temporally. The temporal

sparseness of the observed data would preclude the use of

wavelet analysis that requires continuous time series and

the establishment of robust statistical climate mode-water

temperature relationships that requires large sample sizes.

The model’s horizontal resolution varies across the

NYHOPS domain, ranging from 2.5 km to 250m in the

LIS region and its rivers. Themodel consists of 11 vertical

levels based on a sigma coordinate system. In this

study, the temperature data at vertical level 1 will be

referred to as surface water temperature and the data at

vertical level 11 will be referred to as bottom water

temperature. LIS bottom and surface water temperature

were created by spatially averaging the bottom and

surface water data in the gray-shaded region shown in

Fig. 1a. The seasonal cycles were removed from the time

series by subtracting the 1979–2013 mean monthly value

for each month from the corresponding monthly values

for each month.

Data for the PDO index from 1979 to 2013 were

obtained from the University of Washington (available

at http://research.jisao.washington.edu/pdo/PDO.latest).

The PDO index is defined as the leading empirical or-

thogonal function (EOF) of monthly North Pacific SSTs

poleward of 208N. The NPGO index (available at http://

www.o3d.org/npgo/) was also used to quantify the im-

pacts of North Pacific SSTs on the LIS. The NPGO

represents the second leading mode of sea surface

height variability in the North Pacific and closely follows

the second leading mode of SST variability sometimes

called the North Pacific mode (Di Lorenzo et al. 2008;

Hartmann 2015). Data for the EP/NP index were ob-

tained from the Climate Prediction Center (CPC) and

the index was calculated from a rotated principal compo-

nent analysis of 500-hPa geopotential height anomalies.

Indices for the Pacific–North American teleconnection

pattern (PNA; Wallace and Gutzler 1981) and the west

Pacific (WP; Barnston and Livezey 1987) were obtained

from the CPC and were calculated from a rotated

principal component analysis of 500-hPa geopotential

height anomalies.

For the PDO and EP/NP indices, extended time series

spanning, respectively, the periods 1900–2013 and 1950
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to 2013 were also used to maximize the usefulness of the

wavelet spectral analysis. For all other analyses and

climate indices, the period of record was restricted to

1979 to 2013 to overlap with the time interval of avail-

able LIS data. Missing EP/NP December data were fil-

led based on the correlation between the EP/NP index

and 300-hPa streamfunction anomalies over Alaska

(Schulte and Lee 2017). The December data are missing

because apparently the December EP/NP pattern does

not exist. The nonexistence of the EP/NP pattern could

be an artifact of the principal component analysis used

to construct the index because U.S temperature vari-

ability inDecember is related to a pattern very similar to

the EP/NP pattern (Schulte and Lee 2017). The 64

missing December values were filled by first correlating

the EP/NP index with 300-hPa streamfunction anom-

alies using only data for January and February, where

the correlation calculation was restricted to January

and February because the EP/NP index is most strongly

correlated with 300-hPa streamfunction anomalies

during those months. We then extracted the monthly

300-hPa streamfunction anomaly time series at the grid

point for which the correlation coefficient is the largest.

The maximum correlation coefficient was found to

be 20.75, which corresponds to a grid point located

over Alaska. The monthly February and January

300-hPa streamfunction anomalies were then linearly

regressed with the February and January EP/NP indices

and the resulting linear relationship was used to fill the

missing EP/NP December values based on the available

December 300-hPa streamfunction anomalies at the

grid point.

Results using the North Pacific climate indices were

compared to those obtained using indices describing the

AMO, NAO, and the Gulf Stream position. The NAO

andAMO indices from 1979 to 2013 were obtained from

the CPC. The Gulf Stream Index (GSI; available at

http://www.pml-gulfstream.org.uk/) describes the posi-

tion of the north wall of Gulf Stream and is calculated

from a principal component analysis of the position of

the north wall of the Gulf Stream (Taylor 1995).

The European Centre for Medium-Range Forecasts

(ECMWF) interim reanalysis (ERA-Interim) SST, 300-hPa

streamfunction, and 2-m air temperature reanalysis

data were also used. The grid spacing for 2-m air tem-

perature and 300-hPa streamfunction was 0.1258 lati-
tude and 0.1258 longitude and for SSTwas 0.758 latitude
and 0.758 longitude for SST.

Observed U.S. climate divisional mean monthly

temperature data (Guttman and Quayle 1996) were

used to create a monthly LIS regional air temperature

time series (referred to hereafter as the LIS air tem-

perature time series for brevity). The time series was

first created by correlating LIS surface temperature

anomalies with U.S. climate divisional mean monthly

temperature anomalies (Fig. 1b), where the air tem-

perature anomalies were computed by subtracting the

1979 to 2013 monthly means for each month from the

monthly values for the same month. For this correla-

tion analysis, trends were not removed from the

monthly air and water temperature data because

trends in water temperature should be physically re-

lated to trends in air temperature. The next step in

creating a LIS air temperature time series involved

the computation of an area-weighted average monthly

air temperature anomaly time series using all air tem-

perature anomaly time series that are strongly corre-

lated (r . 0.70) with LIS surface water temperature

FIG. 1. (a) The NYHOPS domain (thick black contoured region) and the Long Island Sound (gray shading). (b) Correlation between

monthly LIS monthly surface water temperature anomalies and U.S. climate divisional mean monthly temperature anomalies. Only

climate divisions (thin black lines) for which correlation coefficients are statistically significant at the 5% significance level are shaded.
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anomalies. The weights were determined based on the

area of the climate division associated with each climate

divisional air temperature anomaly time series. The

climate divisions used in the calculation are shown in

dark red in Fig. 1b. Three monthly LIS air temperature

time series were constructed, one for the 1979 to 2013

time period, a second one for the 1950 to 2013 period,

and a third one for the 1900–2013 period. The anomalies

for the three time serieswere based on 1979–2013monthly

means. The 1900–2013 and 1950–2013 time series were

only used for the wavelet analysis.

There are two benefits to using these LIS air tem-

perature time series for the present analysis. The first

benefit is that two of the LIS air temperature time series

are longer than the LIS water temperature time series.

The two relatively long LIS air temperature time series

makes them useful for identifying low-frequency re-

lationships between the EP/NP index and LIS air tem-

perature anomalies that then can be used to extrapolate

historical climate index relationships with LIS water

temperature. A second benefit is that the LIS air tem-

perature time series is defined on a larger spatial scale

than the LISwater temperature time series, reducing the

possibility that climate index relationships with air

temperature are the result of feedbacks of LIS water

temperature onto to air temperature.

3. Methods

a. Correlation analysis

Lagged relationships between seasonally averaged

water temperature and seasonally averaged climate in-

dices were quantified using a lagged correlation analysis.

In particular, we adopted the Pearson correlation co-

efficient for the computation of statistical relationships.

The statistical significance of the correlation coefficients

was assessed using a Student’s t distribution for a trans-

formation of the correlation. Correlation coefficients were

computed between seasonal means, respectively, as fall

[September–November (SON)], winter [December–

February (DJF)], spring [March–May (MAM)], and

summer [June–August (JJA)]. Other seasons were

defined as a period of three consecutive months. For

example, August through October (ASO) and April

through June (AMJ) were considered seasons. Two

seasons were said to be different if at least one

month composing one season does not belong to the

other. Annual means were calculated based on the

calendar year.

The time series were linearly detrended to avoid

spuriously large correlation coefficients between

otherwise unrelated time series. The time series were

detrended by first computing a least squares fit of a

straight line to the data and then subsequently sub-

tracting the resulting function from the data. Seasonal

means were first computed then the seasonal time series

were detrended separately, one least squares fit of a

straight line for each season. The reason for detrending

the seasonal time series separately is that the magni-

tude of the trends vary. The seasonal means were also

detrended individually before the computation of the

correlation coefficients.

Throughout the paper detrended results are shown.

However, correlation analyses were conducted using

both detrended and raw temperature data to check the

sensitivity of results to the removal of trends, and

cases are highlighted where detrending resulted in

substantial differences in findings. The reason for

checking the sensitivity of results is that detrending

the temperature data does not necessarily imply that

the trend removed is related exclusively to anthro-

pogenic forcing.

b. Wavelet analysis

Nonstationary characteristics of the monthly climate

time series and nonstationary relationships between

monthly climate and temperature time series were

quantified using wavelet analysis. Thewavelet transform

of a time series X is given by

WX
n (s)5

ffiffiffiffiffiffiffi
2dt

s

r
�
N21

n050

x
n0c*

�
(n0 2 n)dt

s

�
, (1)

where c is the Morlet wavelet given by

c(h)5p21/4eiv0he2
1
2h

2

, (2)

v0 5 6 is the dimensionless frequency, t is time, s is the

wavelet scale, dt is a time step determined from the data

(1 month here), N is the length of the time series, and

h5 st (Torrence and Compo 1998). The Morlet wavelet

was adopted for this study because it balances frequency

localization and time localization (Grinsted et al. 2004).

The asterisk in Eq. (1) denotes the complex conjugate.

The wavelet transform was computed at a discrete set of

scales (sj; j5 0,1 , . . . , J), with

s
j
5 s

0
2jd , (3)

J5 d21 log
2

�
Ndt

s
0

�
, (4)

and d5 0:5.

To quantify the relationships between climate modes

and water temperature as a function of frequency and

time, a wavelet coherence analysis was conducted.

Following Grinsted et al. (2004), the (local) wavelet
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squared coherence between two time seriesX and Y is

given by

R2
n(sj)5

jS[s21
j WXY

n (s
j
)]j2

S[s21
j jWX

n (sj)j2]S[s21
j jWY

n (sj)j2]
, (5)

where WXY
n (sj) is the cross-wavelet transform at time

index n and scale sj. The cross-wavelet power, WXY
n (sj),

is defined as the product of the wavelet transform of X

and the complex conjugate of the wavelet transform of

Y. In Eq. (5), S is a smoothing operator defined by

S[Wn(sj)]5 SscalefStime[Wn(sj)]g, where Stime represents

smoothing in time and Sscale is smoothing along the

wavelet scale axis. Using Monte Carlo methods, the

statistical significance of wavelet squared coherence was

found by generating a large number of surrogate red

noise time series pairs with the same lag-1 autocorrela-

tion coefficients as the input time series and computing

the wavelet coherence between each pair (Grinsted

et al. 2004).

Spurious results in wavelet analysis can result from the

simultaneous testing ofmultiple hypotheses (Maraun and

Kurths 2004; Maraun et al. 2007; Schulte et al. 2015;

Schulte 2016). For this reason the cumulative areawise

test developed by Schulte (2016) was applied to control

the number of false positive results. The test is preferred

to other existing areawise (Maraun et al. 2007) and geo-

metric (Schulte et al. 2015) tests because the cumulative

areawise test has greater statistical power and circum-

vents the problem of having to choose two significance

levels for a single statistical test (Schulte 2016). The test

makes use of how contiguous regions of pointwise sig-

nificance (significance patches) arise from the application

of the pointwise test because of the correlation among

adjacent wavelet coefficients. To apply the test, normal-

ized areas of pointwise significance patches were com-

puted over a discrete set of pointwise significance levels,

where the normalized area is defined as the patch area

divided by the square of its centroid’s scale coordinate

and is used to compare the areas of patches at different

scales simultaneously (Schulte et al. 2015). In this study,

the normalized areas were computed for pointwise sig-

nificance levels a5 0:02 to a5 0:18, with the spacing

between adjacent pointwise significance levels being 0.02.

The reason for choosing this discretization of the point-

wise significance levels was that this method produced

good statistical power (Schulte 2016).

To measure relationships at particular frequencies, the

global coherence (Schulte et al. 2016) between two time

series was computed. The global coherence spectrum is a

time-averaged representation of local wavelet squared

coherence defined in Eq. (5). The time-averaged wavelet

squared coherence is given by

G
C
(s

j
)5

jWXY(s
j
)j2"

�
N

n51

jWX
n (sj)j2

#"
�
N

n51

jWY
n (sj)j2

# , (6)

where

WXY(s
j
)5 �

N

n51

WX
n (sj)W

Y*
n (s

j
) (7)

(Elsayed 2006; Schulte et al. 2016). Equation (6) mea-

sures the coherence between two time series in the en-

tire study period at a scale sj. The statistical pointwise

significance of GC(sj) was computed using Monte

Carlo methods in a similar manner as for local wavelet

coherence. In this study the global coherence spectra

are used to better identify the time scales at which

coherence is the largest.

A modified version of the cumulative areawise test

was also applied to the global coherence spectra to re-

duce the number of false positive results. The test

assessed the statistical significance of peaks against a

red-noise background based on arc length instead of

area as in the full coherence spectrum (see the appen-

dix); referred to hereafter as the arcwise test. More

specifically, the arc lengths of the portion of the peaks

that were above the critical level of the test corre-

sponding to the pointwise significance level a were

computed. The arc length of the peaks was computed for

pointwise significance levels a5 0:02 to a5 0:18, with

the spacing between adjacent pointwise significance

levels being 0.02. The reason for choosing this dis-

cretization was to be consistent with the cumulative

areawise test. A test statistic called the cumulative arc

length was then defined as the cumulative sum of the arc

lengths across all pointwise significance levels. Here, we

used normalized arc lengths, which were calculated us-

ing the logarithm of wavelet scales. Normalization is

necessary because peaks widen with increasing scale

because the decorrelation length of the Morlet wavelet

increases with scale (Maraun et al. 2007). The null dis-

tribution was obtained by generating surrogate red noise

time series in the same manner as the cumulative area-

wise test and computing the null distribution of arc

lengths. The cumulative arc length test statistic was then

compared to the null distribution of cumulative arc

lengths under the null hypothesis of red noise.

4. Results

a. LIS time series

The most salient features of the nondetrended time

series for LIS air temperature, surfacewater temperature,
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and bottom temperature anomalies are the prominent

anomalous warm events in 1999 and 2012 (Fig. 2). Other

notable events are the 1991 warm period and the cold

periods in 1981, 1993, and 2011. An inspection of Fig. 2

reveals that the LIS air temperature time series appears

to have fluctuated coherently with the time series for

both surface (r5 0.93; p,0.001) and bottom temperature

(r 5 0.92; p ,0.001) time series. The result suggests that

atmospheric processes associated with changes in air

temperature are likely the primary mechanisms govern-

ing LIS water temperature variability. Another notable

feature of Fig. 2 is that for all three time series colder-

than-normal conditions are more frequent earlier in the

record and warmer-than-normal conditions are more

frequent later in the record.

b. PDO and EP/NP indices

The PDO index from 1900 to 2013 together with its

wavelet power spectrum shows low-frequency variabil-

ity of the raw monthly PDO index (Fig. 3a). A note-

worthy feature is the persistent and strongly negative

PDO index extending from 2010 to 2012. The lack of

statistically significant wavelet power for the raw

monthly PDO index (Fig. 3b) suggests that the PDO

index has no intrinsic time scale so that fluctuations in

the PDO index may be stochastic. The higher wavelet

power at low frequencies together with the nonexistence

of statistical significance suggests that the PDO is consis-

tentwith a red-noise processwith a long decorrelation time

scale. As noted by Chan and Zhou (2005), the strongest

PDO signal is in the 16–32-yr period band but the results

from the present analysis suggest that the wavelet power

in the 16–32-yr period band is indistinguishable from a

red-noise background. Although Lara et al. (2016)

found statistically significant wavelet power at a period

of 12 months, our results suggest that PDO fluctuations

at that the time sale are also stochastic. The results

from the present wavelet analysis are consistent with

the idea that the PDO is an integrated response to

ENSO and atmospheric forcing and not an intrinsic

oscillatory pattern in the climate system.

As shown in Fig. 4, the monthly EP/NP index is noisy

but prominent features are still identifiable from an in-

spection of the raw time series (Fig. 4a). For example,

2011 and 2012 consist of near-record negative EP/NP

indices and all 12 calendar months in 2011 are identified

with negative EP/NP indices (Fig. 5). The positive LIS

water temperature anomalies during those years are

unprecedented compared to water temperature anom-

alies at other times in the 34-yr hindcast, suggesting a

possible link between the EP/NP pattern and the vari-

ability of anomalies for LIS air and water temperature.

The wavelet power spectrum of the EP/NP index

(Fig. 4b) shows enhanced 5- to 10-yr variability that

exceeds a red-noise background. The statistically sig-

nificant wavelet power in the 5- to 10-yr period band

(region bounded by dotted lines in Fig. 4b) extends

throughout the record length but the statistical signifi-

cance declines at the edges of the record. It is unclear,

however, if the reduction in statistical significance is

physical or due to edge effects inherent in wavelet

analysis that are not negligible in the cone of influence

(Torrence and Compo 1998) depicted by the light

shading in Fig. 4b.

The EP/NP time series was smoothed based on the re-

sults of the wavelet analysis to highlight the quasi-decadal

FIG. 2. 12-month running means of (a) LIS air, (b) surface water, and (c) bottom water tem-

perature anomalies.
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variability. A filtered time series was calculated by

setting all wavelet coefficients to zero except those in

the period band indicated by the dotted lines in Fig. 4b

and then taking the inverse wavelet transform of the re-

sulting set of wavelet coefficients. The resulting time se-

ries from the procedure, hereafter referred to as the

quasi-decadal mode, has an amplitude that changes with

time. The quasi-decadalmode around the 1900, 1999, and

2012 warm periods (Fig. 2) is in a negative phase. On the

other hand, the relatively cool period in the mid-1990s

coincides with a positive phase of the quasi-decadal

mode. The quasi-decadal mode does not switch sign in

2008 and so neither negative nor positive EP/NP indices

are preferred (thin black curve) around that time.

c. Correlation with climatic fields

As shown in Fig. 1b, monthly LIS surface water tem-

perature anomalies are positively correlated with monthly

air temperature anomalies across the eastern two-thirds of

the U.S. and negatively related to air temperature anom-

alies across the U.S. west coast. The negative correlation

coefficients located across the U.S west coast suggest that

LISwater temperature variability is related to a large-scale

climate pattern.

FIG. 3. (a) Raw monthly PDO index from 1900 to 2013 and (b) its corresponding wavelet

power spectrum. Contours enclose regions of 5% cumulative areawise significance. Light

shading represents the cone of influence, the region in which edge effects are not negligible.

FIG. 4. (a) Rawmonthly EP/NP index and the quasi-decadal mode (thick black curve) of the

EP/NP index. (b) As in Fig. 3b, but for the raw monthly EP/NP index. Dotted lines bound the

period band in which statistically significant wavelet power was identified at quasi-decadal

time scales.
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To show LIS water temperature anomalies are related

to a large-scale climate pattern, we correlatedmonthly LIS

surface water temperature anomalies with monthly SST

anomalies (Fig. 6a). The results from the analysis show that

LIS water temperature anomalies are negatively corre-

lated with SST anomalies along the U.S. West Coast and

positively correlatedwith SST anomalies across the central

North Pacific Ocean. A comparison of Fig 6a with Figs. 6b

and 6c shows that the correlation pattern resembles that

obtained by correlating the indices for the PDO and EP/

NP with SST anomalies. All three time series are cor-

related with SST anomalies across the western tropical

Pacific, a region where tropical convection is especially

effective at exciting Rossby waves (Simmons et al.

1983; Palmer and Mansfield 1984) because SSTs there

are among the warmest in the world (Palmer 2014).

Some differences between the correlation patterns are

evident. For example, the PDO index is correlated with

SST anomalies across the eastern equatorial Pacific,

whereas LIS surface water temperature anomalies are

not. It thus appears that LIS water temperature vari-

ability is related to Pacific SST variability unrelated to

canonical ENSO. Evidence for the lack of relationship

with ENSO was supported by correlating common

monthly indices describing ENSO, such as the Niño-1.2
and Niño-3.4 indices, with the monthly temperature

anomaly time series for LIS air and water temperature.

The analysis identified no statistically significant re-

lationships with any of the ENSO metrics, supporting

the idea that ENSO is not directly a climate pattern

influencing LIS temperature anomalies.

The results from the correlation analysis between LIS

water temperature anomalies and 300-hPa stream-

function anomalies suggest that LIS water temperature

anomalies are associated with Rossby wave trains em-

anating from the western equatorial Pacific (Fig. 7a).

The correlation pattern also shows that monthly LIS

surface water temperature anomalies are negatively

correlated with 300-hPa streamfunction anomalies over

Alaska and the western equatorial Pacific. The corre-

lation pattern is also such monthly LIS water tempera-

ture anomalies are positively correlated with 300-hPa

streamfunction anomalies over the central equatorial

Pacific, North Pacific Ocean, and U.S. Northeast. A

comparison of the correlation pattern shown in Fig. 7a

with those associated with the PDO and EP/NP indices

(Figs. 7b,c) reveals similarities in the 300-hPa stream-

function patterns. In particular, both the monthly EP/NP

index and monthly LIS surface temperature anomalies

are correlated with 300-hPa streamfunction anomalies

across the western Pacific and over Alaska, and thus

positive monthly EP/NP indices and negative monthly

LIS surface water temperature anomalies are associ-

ated with a jet stream ridge over Alaska. The PDO

index is not correlated with 300-hPa streamfunction

anomalies over Alaska but is associated with negative

300-hPa streamfunction anomalies across the majority

of the contiguous United States.

d. Correlation with climate indices

The similarity between the correlation patterns shown

in Figs. 7a and 7c suggests that the EP/NP pattern is

FIG. 5. Raw monthly time series for the EP/NP index and standardized monthly anomaly

time series for air temperature, surface temperature, and bottom temperature from January

2011 to December 2012. Black squares represent the rawmonthly EP/NP indices for the month

indicated on the horizontal axis for the period 1950 to 2013.
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FIG. 6. (a) Correlation betweenLIS surfacewater temperature anomalies and SST anomalies

from 1979 to 2013. Contours enclose regions of 5% statistical significance. (b) As in (a), but for

the PDO index. (c) As in (a), but for the EP/NP index.
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related to LIS water temperature anomalies and there-

fore it is reasonable to correlate LIS water temperature

anomalies with various large-sale climate indices to iden-

tify possible relationships with the associated climate

patterns. The results from the correlation analysis be-

tween seasonally averaged detrended LIS temperature

anomalies and various seasonally averaged climate in-

dices are shown in Table 1. The results show statistically

FIG. 7. (a) As in Fig. 6a, but for 300-hPa streamfunction anomalies. (b) As in Fig. 6b, but for

300-hPa streamfunction anomalies. (c) As in Fig. 6c, but for 300-hPa streamfunction anomalies.
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significant relationships between winter (DJF) anomalies

for water and air temperature andDJF indices for theEP/

NP and PDO. The magnitude of the correlation co-

efficients calculated between the DJF EP/NP index and

DJF anomalies for LIS air and water temperature

anomalies exceeds 0.55. In comparison, the magnitude of

the correlation coefficients corresponding to the DJF

NAO and PDO analyses do not exceed 0.35. These re-

sults suggest that the DJF EP/NP pattern is the dominant

pattern associated with DJF LIS water and air tempera-

ture variability. The results are consistent with how the

EP/NP index is associated with changes in the eastern

U.S. trough (Fig. 7c), where jet stream troughs are asso-

ciated with cooler-than-normal surface conditions. The

results do not support a dominant role played by other

well-known large-scale climate phenomena.

The EP/NP pattern also emerges as the dominant

climate mode in the spring, although the MAM WP in-

dex is also correlated with MAM LIS air temperature

anomalies. The EP/NP–air temperature relationships

for the JJA and SON seasons are weaker than those for

the MAM season. The SON PDO index is moderately

correlated with SON air temperature (r 5 20.40) but

weakly correlated with SON LIS water temperature

anomalies. The JJA PDO index is also moderately

correlated (r ’ 20.45) with JJA anomalies for surface

and bottom water temperature anomalies but the JJA

PDO index is only weakly correlated with JJA LIS air

temperature anomalies, suggesting a possible lag re-

lationship between LIS air temperature and water

temperature anomalies (section 4g).

The annually averaged PDO and EP/NP indices are

most correlated with both mean annual LIS air and

water temperature anomalies. Neither the annual mean

NAO index nor the annual mean GSI is significantly

correlated with annual mean air or water temperature

anomalies despite the proximity of the LIS to the At-

lantic Ocean. However, theDJF and SONNAO index is

correlated with LIS water temperature anomalies for

the DJF and SON seasons.

The DJF indices for the PDO, EP/NP, and NAO

were correlated to both DJF surface and bottom water

temperature anomalies across the NYHOPS domain to

identify spatial patterns in the climate mode–water

temperature relationships (Fig. 8). Both DJF surface

and bottom winter water temperature anomalies are

most strongly correlated with the DJF EP/NP index,

with correlation coefficients approaching20.7 near the

mouth of the Hudson River and in regions surrounding

the Delaware Bay. Correlation coefficients range

from20.7 to20.6 in the LIS. For both DJF surface and

bottom temperature anomalies, relationships are

weaker with the DJF PDO index. Note that the DJF

EP/NP index relationships with DJF bottom water

temperature anomalies weaken away from the land.

Physically, the gradient in the magnitude of the cor-

relation coefficients can be interpreted as the result of

water depth being shallow along the shelf where ver-

tical mixing can readily communicate surface water

temperature anomalies arising from atmospheric fluc-

tuations to the bottom waters. In the open ocean, the

local water depth is much deeper than the mixed-layer

depth so only strong vertical mixing would communi-

cate surface water temperature anomalies to the bot-

tom waters.

The results from the correlation analysis between the

DJF NAO and DJF water temperature anomalies

(Figs. 8e,f) show that statistically significant relation-

ships are mainly located across southwestern portions of

the NYHOPS domain. The DJF GSI is only correlated

with DJF water temperature anomalies around the

eastern edge of the NYHOPS domain (Figs. 8g,h).

These results suggest that wintertime water temperature

variability in this region is dominated by atmospheric

fluctuations associated with the EP/NP pattern.

TABLE 1. Pearson correlation between various climate indices

and detrended anomaly time series for LIS air, surface, and bottom

temperature from 1979 to 2013 for winter, spring, summer, fall, and

annual mean. Bold entries are statistically significant at the

5% level.

DJF MAM JJA SON Annual

Air temperature

EP/NP 20.65 20.50 20.31 20.43 20.46

NPGO 0.09 0.25 0.06 20.02 0.18

WP 0.14 0.44 20.30 0.30 0.13

PNA 0.12 20.14 0.03 0.02 0.00

PDO 20.35 20.23 20.07 20.40 20.26

NAO 0.29 20.01 0.04 0.34 20.17

GSI 0.01 20.20 0.16 20.16 0.06

AMO 0.13 0.07 0.28 0.13 0.21

Surface temperature

EP/NP 20.57 20.31 20.31 20.15 20.39

NPGO 20.03 0.40 0.35 20.02 0.28

WP 0.21 0.30 20.17 0.17 20.02

PNA 0.18 20.09 20.08 0.00 0.02

PDO 20.28 20.35 20.42 20.29 20.31

NAO 0.35 20.05 20.12 0.37 20.08

GSI 0.05 20.03 0.23 0.06 0.18

AMO 0.03 0.12 0.33 0.10 0.15

Bottom temperature

EP/NP 20.56 20.23 20.14 20.17 20.35
NPGO 20.06 0.39 0.28 20.02 0.26

WP 0.21 0.27 20.16 0.17 20.05

PNA 0.18 20.14 20.19 20.04 20.03

PDO 20.27 20.36 20.45 20.31 20.33

NAO 0.35 20.08 20.17 0.39 20.07

GSI 0.04 0.00 0.33 0.06 0.21

AMO 0.00 0.12 0.19 0.10 0.11
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FIG. 8. Correlation betweenwinter anomalies for the NYHOPS domain’s surface

and bottom water and winter indices for the (a),(b) PDO, (c),(d) EP/NP, (e),

(f) NAO, and (g),(h) Gulf Stream position from 1979 to 2013. Only correlation

coefficients statistically significant at the 5% level are displayed.
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A similar analysis was conducted for the other sea-

sons. The results from the summer correlation analysis

show that the JJA PDO index is correlated with JJA

surface and bottom water temperature anomalies

across the NYHOPS domain (Fig. 9), the strongest

relationships located in and around the LIS. Negative

correlations between JJA LIS surface water tempera-

ture anomalies and the JJA EP/NP index are located

around the LIS but few relationships are statistically

significant.

Correlations between water temperature anomalies

and the climate indices are generally weaker during the

other seasons. The larger correlation coefficients found

in the DJF analysis compared to the other seasons are

consistent with how most teleconnection patterns are

most pronounced during winter. However, unlike in

winter, strong and statistically significant JJA NAO–

water temperature (Figs. 9e,f) and JJA GSI–water

temperature (Figs. 9g,h) relationships are located

across portions of the NYHOPS domain. The statisti-

cally significant JJA GSI–water temperature relation-

ships are confined to eastern portions of the NYHOPS

domain (Figs. 9g,h). This result is consistent with how

the eastern portion of the NYHOPS domain is located

closer to the Gulf Stream than western portions of the

study region.

The results from the correlation analyses presented in

Table 1 and Figs. 8 and 9 are not sensitive to the removal

of long-term temperature trends except for one notable

exception. The AMO index is more correlated with LIS

water temperature when the LIS water temperature

time series contain the trends. For example, the annual

mean LIS surface water temperature time series is

strongly correlated with the annual mean AMO index

(r520.6) when the LIS surface water temperature time

series contains the long-term trend. The sensitivity of

the results to the linear detrending could mean that part

of the LIS water temperature trend is related to the

low-frequency variability of the AMO. However, it is

unclear how the AMO could influence LIS water tem-

perature variability given that monthly air temperature

fluctuations are so strongly related to monthly LIS water

temperature fluctuations (Fig. 1b).

e. Cross-correlation analysis

Although robust relationships between seasonally

averaged climate indices and seasonally averaged

anomaly time series for air and water temperature were

identified in section 4d, the analysis did not account for

possible lag relationships. To account for possible lag

relationships, we computed the cross-correlation be-

tween detrended seasonally averaged anomalies for

LIS air and water temperature and seasonally averaged

climate indices. The analysis focused on the EP/NP

pattern because of its strong and consistent relationships

with LIS water temperature anomalies (Table 1).

The results of the cross-correlation analysis are pre-

sented in Fig. 10. The vertical axis of Fig. 10 refers to the

lead time (in seasons) of the seasonally averaged EP/NP

index so that distance from the horizontal axis is pro-

portional to the lead time of the seasonally averaged EP/

NP index. For example, the green square is centered in

the shaded rectangle representing the correlation be-

tween the DJF EP/NP index and MAM detrended

anomalies for LIS air or water temperature (because the

y-axis value is three seasons after the EP/NP index).

Similarly, the green circle is centered in the rectangle

representing the correlation between the DJF EP/NP

index and JJA detrended anomalies of LIS air and water

temperature. The green diamond, as another example, is

located within the rectangle representing the correlation

between the DJF EP/NP index and SON detrended

anomalies for LIS air and water temperature.

The results shown in Fig. 10 indicate that the seasonally

averaged EP/NP index is most strongly related to season-

ally averaged LIS air and water temperature anomalies in

the winter. For LIS water temperature, the DJF EP/NP

index is generally more strongly related to water temper-

ature when the DJF EP/NP index leads by 1 to 3 seasons

than when the DJF EP/NP index leads by 0 seasons. That

is, Fig. 10 suggests that the DJF EP/NP index is a good

predictor of what seasonally averaged LIS water temper-

ature anomalies will be in the subsequent January–March

(JFM), February–April (FMA), andMAMseasons. These

lagged DJF EP/NP index relationships with LIS water

temperature anomalies explain why the DJF EP/NP index

relationship with DJF LIS air temperature anomalies is

stronger than the DJF EP/NP index relationship with DJF

LIS water temperature anomalies as shown in Table 1.

Figure 10 also shows that the DJF EP/NP index is signifi-

cantly correlated with JJA LIS water temperature anom-

alies (lag 5 6 seasons).

A similar cross-correlation analysis was conducted but

with the seasonally averaged PDO index (not shown).

The results are generally similar because the PDO and

EP/NP indices are correlated, especially during the fall

(not shown). The seasonally averaged EP/NP index is

generally more strongly cross-correlated with seasonally

averaged LIS air and water temperature anomalies than

the seasonally averaged PDO index. The lagged re-

lationship between the DJF EP/NP index and JJAwater

temperature anomalies together with the correlation

between the EP/NP and PDO indices also explains why

the JJA PDO index is correlated with JJA LIS water

temperature anomalies but not with JJA LIS air

temperature anomalies (Table 1).
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FIG. 9. Correlation between summer anomalies for the NYHOPS domain’s

surface and bottom water and summer indices for the (a),(b) PDO, (c),(d) EP/NP,

(e),(f) NAO, and (g),(h) Gulf Stream position from 1979 to 2013. Only correlation

coefficients statistically significant at the 5% level are displayed.
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FIG. 10. Seasonal cross-correlation between the seasonally averaged EP/NP index and de-

trended seasonally averaged anomalies for (a) LIS air temperature, (b) LIS surface tempera-

ture, and (c) LIS bottom temperature from 1979 to 2013. Only correlation coefficients

statistically significant at the 5% level are shown. Square, circular, and diamond-shaped

markers represent the correlation between the season indicated on the horizontal axis and the

first, second, and third nonoverlapping season, respectively. Colored markers indicate the re-

lationships that are highlighted in the main text.
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f. Composite analysis

To further test the robustness of the lagged relation-

ships shown in Fig. 10, a composite analysis was per-

formed. Composite means of seasonally averaged LIS

water temperature anomalies were computed for years

when the DJF EP/NP index was positive and for years

when the DJF EP/NP index was negative. To determine

if the two composite means were statistically different, a

bootstrap resampling procedure (Efron 1979) was con-

ducted in which 500 bootstrap replicates of the com-

posite means were computed to estimate the sampling

distributions corresponding to the composite means.

95% confidence intervals were then computed based on

the estimated sampling distributions. Two means were

deemed statistically different at the 5% significance

level if their corresponding 95% confidence intervals did

not intersect.

As shown in Fig. 11, years for which the DJF EP/NP

index is negative are associated with warmer-than-

normal seasonally averaged LIS water temperature

conditions from winter (DJF) through the summer

(JJA). Similarly, years for which the DJF EP/NP index

is positive are generally associated with negative sea-

sonally averaged LIS water temperature anomalies

from the winter through the summer. For the non-

detrended analysis (Fig. 11a), the composite mean LIS

water temperature anomalies associated with the pos-

itive and negative DJF EP/NP years are significantly

different at the 5% level for all seasons except the

FIG. 11. (a) Composite means of nondetrended seasonally LIS surface water temperature

anomalies for years when the DJF EP/NP index is positive (blue curve) and when the DJF EP/

NP index is negative (red curve). Red and blue shaded regions are 95% confidence intervals

associated with the composite means. (b) As in (a), but for detrended seasonally averaged LIS

surface water temperature anomalies.

2760 JOURNAL OF CL IMATE VOLUME 31



October–December (OND) and November–January

(NDJ) seasons. The results for the detrended analysis

(Fig. 11b) are similar except that the composite means

are also not significantly different for the AMJ, May–

July (MJJ), JJA, and July–September (JAS) seasons.

The results from this composite analysis are consistent

with the correlation analysis results presented in Fig. 10

because the results from both analyses suggest that

years with negative (positive) DJF EP/NP indices are

generally associated with positive (negative) sub-

sequent seasonally averaged LIS water temperature

anomalies. Both analyses thus support that idea that

the DJF EP/NP pattern is an indicator of subsequent

LIS water temperature conditions.

g. Seasonal persistence of water temperature

Further analyses explored explanations for cross-

correlations of the EP/NP index with seasonally aver-

aged LIS water temperature anomalies at numerous

consecutive lags. A possible reason for the lagged re-

lationships is that seasonally averaged LIS water tem-

perature anomalies are autocorrelated. To test the

autocorrelation hypothesis, we computed the seasonal

cycle of autocorrelation of detrended seasonally aver-

aged LIS water temperature anomalies.

Figure 12 shows that DJF water temperature anom-

alies are correlated with LIS water temperature anom-

alies in the subsequent canonical spring (green square)

FIG. 12. Seasonal cycle of autocorrelation for seasonally averaged detrended LIS (a) surface

and (b) bottom water temperature anomalies from 1979 to 2013. Only autocorrelation co-

efficients statistically significant at the 5% level are shown. Square, circular, and diamond-

shaped markers represent the correlation between the season indicated on the horizontal axis

and the first, second, and third nonoverlapping season, respectively. Colored markers indicate

the relationships that are highlighted in the main text.
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and summer (green circle). However, the correlation

between DJF LIS water temperature and summer LIS

water temperature anomalies is rather weak, suggesting

that not every DJF LIS water temperature anomaly will

persist into the summer. MAM water temperature

anomalies are shown to be strongly correlated with JJA

water temperature anomalies (cyan squares). Figure 12

also suggests that seasonally averaged LIS water tem-

perature anomalies in the winter, spring, and fall seasons

aremore autocorrelated than summer water temperature

anomalies. For example, JJA bottom water temperature

anomalies are not correlated with subsequent SON bot-

tom water temperature anomalies, as indicated by the

magenta square in Fig. 12. The results presented in Fig. 12

suggest that the reason why seasonally averaged EP/NP

index is correlated with seasonally averaged water tem-

perature anomalies at numerous consecutives lags is

partially because of the autocorrelation of the water

temperature anomalies.

Although Fig. 12 shows that seasonally averaged LIS

water temperature anomalies are autocorrelated, it

does not explain how the water temperature anoma-

lies are generated. To show that LIS water tempera-

ture anomalies are strongly related toLIS air temperature

anomalies, we computed the cross-correlation between

seasonally averaged LIS air and water temperature

anomalies. The results reveal that seasonally averaged air

temperature anomalies can explain over 80% of LIS

water temperature variability in the winter season and

over 64% in the spring and fall seasons if one accounts for

lags (Fig. 13). DJF and MAM LIS air temperature

anomalies are both correlated with JJA bottom water

temperature anomalies (green circle and cyan square,

respectively) but only MAM air temperature anoma-

lies are significantly correlated with JJA surface water

temperature anomalies. JJA surface water temperature

anomalies are more correlated with JJA air tempera-

ture anomalies than are JJA bottom water temperature

anomalies, indicating that JJA surface water tempera-

ture anomalies more strongly reflect JJA air tempera-

ture conditions and that JJA bottom water temperature

anomalies most strongly reflect air temperature condi-

tions of prior seasons. Note that JJALIS air temperature

anomalies are not significantly correlated with SON LIS

bottom or surface water temperature anomalies (ma-

genta squares). This result can be interpreted physi-

cally as the summer shallow mixed layer containing the

JJA LIS surface water temperature anomalies reflect-

ing summer air temperature conditions being mixed

with bottom water temperature anomalies by extra-

tropical cyclones in the fall (Lentz et al. 2003). The

results presented in Figs. 10 and 13 collectively suggest

that the lagged relationship between the DJF EP/NP

index and water temperature is established through

the influence of LIS air temperature on LIS water

temperature.

The results shown in Fig. 13 also imply that an initially

negative DJF water temperature anomaly can be re-

inforced in the spring if spring air temperature anoma-

lies are negative. In such cases, a DJFwater temperature

anomaly is more likely to persist into the summer. The

pronounced decadal variability of the EP/NP pattern

(Fig. 4) and the EP/NP–air temperature relationships

suggest that the anomalous atmospheric forcing that

drives LIS water temperature variability has a tendency

to reinforce the initial water temperature anomalies. In

other words, the tendency for the EP/NP pattern to re-

main in a similar phase for a few years allows LIS water

temperature anomalies to be reinforced or maintained

by the EP/NP pattern until the EP/NP decadal mode

changes sign. The reinforcement mechanism appears to

have operated in 2011 and 2012 when a persistently

negative EP/NP pattern helped maintained positive LIS

air and water temperature anomalies for nearly a 2-yr

period (Fig. 5). The EP/NP pattern is also seen to have

been in a persistent negative phase during the 1991 and

1999 warm periods (Figs. 2 and 4). The enhanced EP/NP

decadal variability may thus explain why LIS water

temperature anomalies can persist for several seasons.

The close relationship between air temperature and

water temperature suggests that the degree of persis-

tence will depend on the persistence of the atmospheric

forcing.

A DJF water temperature anomaly can also be de-

graded if the subsequent spring air temperature anom-

aly is positive. In such cases, a DJF water temperature

anomaly may not persist into the summer. Importantly,

subsequent climatological spring air temperature con-

ditionsmay not offsetDJFwater temperature anomalies

if the DJF anomalies are initially very large. Thus, sub-

sequent water temperature anomalies depend on the

initial strength of the DJF water temperature anomalies

as shown in Fig. 12 and on the subsequent air tempera-

ture conditions as shown in Fig. 13. This reasoning ex-

plains the existence of the lagged EP/NP index

relationships with water temperature shown in Fig. 10

because stronger EP/NP phases are generally associated

with larger air and water temperature anomalies that are

less readily degraded by subsequent air temperature

conditions.

h. Wavelet analysis

The cross-correlation analysis in section 4e detected

the seasons for which the EP/NP pattern’s influence on

LIS water temperature is the strongest. However, the

analysis provides little information about the time scales
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for which the EP/NP pattern’s influence is the strongest.

As shown in Fig. 4, the EP/NP pattern is most energetic

at decadal time scales so it is reasonable to hypothesize

that anomalies for LIS air and water temperature vary

coherently with the EP/NP index at decadal time scales

given the strong correlation between the EP/NP index

and LIS water temperature. Figures 14a and 15a provide

qualitative evidence for coherent low-frequency fluctu-

ations between the EP/NP pattern and anomalies for

LIS air and water temperature. As shown in Figs. 14a

and 1a, time periods when the EP/NP index is negative

generally correspond to time periods when detrended

LIS air and water temperature anomalies are positive.

Conversely, time periods when the EP/NP index is

positive generally correspond to time periods when de-

trended LIS air and water temperature anomalies are

negative.

To formally test the hypothesis that LIS air and water

temperature anomalies fluctuated coherently with the

EP/NP pattern at decadal time scales, the local wavelet

squared coherence between the monthly EP/NP index

and monthly detrended anomalies for LIS air and water

temperature was computed. The wavelet coherence

analysis results were found to be insensitive to the linear

detrending of the data and therefore we only present the

results from the detrended analysis.

Figures 14 and 15 show that statistically significant

coherence is located at a period of 128months, supporting

FIG. 13. Seasonal cycle of cross-correlation between seasonally average detrended LIS air

temperature anomalies and detrended seasonally averaged anomalies for (a) LIS surface

temperature and (b) LIS bottom temperature from 1979 to 2013. Only cross-correlation co-

efficients statistically significant at the 5% level are shown. Square, circular, and diamond-

shaped markers represent the correlation between the season indicated on the horizontal axis

and the first, second, and third nonoverlapping season, respectively. Colored markers indicate

the relationships that are highlighted in the main text.
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the idea that monthly LIS air and water temperature

anomalies fluctuate coherently with the EP/NP pat-

tern on decadal time scales. Statistically significant

coherence is also located at a period of 24 months.

The similarity between EP/NP–air temperature and

EP/NP–water temperature results is not surprising be-

cause LIS water temperature fluctuations are primarily

governed by fluctuations in air temperature (Figs. 1b

and 13). The statistically significant coherence at de-

cadal time scales suggests that time periods when the

decadal EP/NP mode shown in Fig. 4a is positive are

generally time periods when LIS air and water temper-

ature anomalies are negative. Because wavelet co-

herence measures linear relationships, stronger EP/NP

decadal fluctuations should produce stronger decadal

fluctuations in LIS air and water temperature anomalies.

Moreover, because the EP/NP pattern is correlated with

300-hPa streamfunction anomalies over the eastern

United States (Fig. 7), time periods when the EP/NP

decadal mode is positive are time periods when jet

stream troughs are favored across the eastern United

States. The strong coherence at a period of 128 months

FIG. 14. (a) 5-yr running means of the monthly EP/NP index and detrended LIS air tem-

perature time series. (b) Local wavelet coherence between detrended monthly LIS air tem-

perature anomalies and the monthly EP/NP index. Contours enclose regions of 5% cumulative

areawise significance and light shading represents the cone of influence. (c) The global wavelet

coherence spectrum corresponding to (b).

FIG. 15. As in Fig. 14, but for LIS surface water temperature anomalies.

2764 JOURNAL OF CL IMATE VOLUME 31



therefore suggests that decadal fluctuations of LIS air

and water temperature anomalies are the result of

fluctuations in the eastern U.S. jet stream trough. As

shown in Fig. 7, the EP/NP index is also correlated with

300-hPa streamfunction anomalies over Alaska, hence

decadal LIS air and water temperature fluctuations are

associated with changes in the so-called ridge–trough

dipole that has received recent attention because of its

role in driving U.S. temperature extremes (Wang et al.

2015). The high coherence of the EP/NP index with both

LIS air and water temperature anomalies also suggests

that temperature variability at those time scales is re-

lated fluctuations in the eastern U.S trough rather than,

say, perturbations in the Gulf Stream position that occur

strongly on 7- to 10-yr time scales (Taylor 1995).

The wavelet analysis was also conducted between

temperature and the GSI and between temperature and

indices for the AMO and NAO. Surprisingly, the local

and global coherence analysis produced no statistically

significant results. A possible explanation for the lack of

statistical significance is that the AMO is often associ-

ated with characteristic time scales greater than 20 years

and so the record length used in this study may be too

short to capture such low-frequency relationships.

i. Cumulative deviation analysis

Regime changes associated with the PDO and EP/NP

indices are illustrated by conducting a cumulative de-

viation analysis of annual mean climate indices and

nondetrended temperature anomalies. Computed an-

nual means were standardized by their respective 1979–

2013 standard deviations.

For both air (not shown) and surface water tempera-

ture (Fig. 16), there is a downward trend in the cumu-

lative sums from 1979 to 1997, indicating the LIS water

temperature anomalies are predominately negative

during that period (Fig. 2). Similarly, for the PDO and

EP/NP indices, there are upward trends in the cumula-

tive sums from 1979 to 1997, though the cumulative sum

for the EP/NP index is nearly zero from 1979 to 1990. At

1997, an inflection occurs and an upward trend in the

cumulative sum for annual mean water temperature

anomalies is present after 1997. The upward trend im-

plies that annual mean water temperature anomalies are

generally positive after 1997 (Fig. 2). Remarkably,

around 1997 both the annual mean PDO and EP/NP

indices appear to undergo a regime shift and downward

trends in cumulative sums are present from 1997 to 2013,

where the downward trends suggest that the 1997 to

2013 period is dominated by negative annual mean PDO

and EP/NP indices. This result suggests that periods of

warmer-than-normal conditions or colder-than-normal

conditions are related to specific phases of the EP/NP

and PDO patterns, and hence the apparent warming

trend of LIS water temperature since 1997may be due to

both natural climate variability and anthropogenic

climate change.

5. Conclusions and discussion

Climate factors contributing to LIS water tempera-

ture variability were investigated. The PDO and EP/NP

indices are strongly correlated with water temperature

in the LIS. The PDO and EP/NP relationships with

water temperature are stronger than the relationships of

water temperature with the Gulf Stream position. The

results suggest that LIS water temperature variability is

primarily related to upstream atmospheric processes

that render changes in the LIS thermal system.

Evidence was also found to support the idea that the

EP/NP index may be skillful in making seasonal water

temperature outlooks. The cross-correlation analysis

(Fig. 10), in particular, shows that the DJF EP/NP index

is a good predictor of subsequent MAM water temper-

ature anomalies and also a predictor of JJA water

temperature anomalies. This result suggests that the EP/

NP index can be used to construct summer water tem-

perature outlooks with lead times of 6 to 8 months. Such

outlooks may prove useful for managing fisheries in the

sense that stock assessments and harvest management of

living marine resources can be informed by temperature

projections based on previous EP/NP index values.

The EP/NP and PDO modes were found to be impor-

tant to the historical variability of LIS water temperature

and the results highlight how the influence of natural

variability can be large. Importantly, the monthly EP/NP

pattern has a characteristic time scale of 8 to 10 years

(Fig. 4) and the detected characteristic time scale together

with the wavelet coherence analysis results suggests that it

may be possible to make assessments about LIS thermal

FIG. 16. Cumulative sumof standardized annualmean indices for

the PDO and EP/NP and nondetrended standardized anomalies

for LIS surface water temperature.
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conditions from one decade to the next. As of the end of

2013, the quasi-decadal mode of the EP/NP index is pos-

itive (Fig. 3) and the wavelet analysis results indicate that

it could progress to a negative phase given its 10-yr peri-

odicity. Should the quasi decadal mode change phase,

enhanced warming may be experienced across the LIS

within the next five years because the negative EP/NP

indices favor warmer-than-normal conditions that would

be superimposed on the global warming signal. The rapid

warming may negatively impact the already strained LIS

that has experienced record warm temperature in

recent years.

As diagnosed in this study, the PDO is composed of

stochastic fluctuations, despite previous work showing

strong variability at the annual time scale and in the

16–32-yr period band (Chan and Zhou 2005; Lara et al.

2016). The stochastic nature of PDO will pose a chal-

lenge in determining when it will change prominent sign

and thus also in assessing its future impact on the LIS

thermal system.

Recent work by Chen et al. (2014, 2015) showed that

the anomalously warmmid-Atlantic water temperatures

across the mid-Atlantic Bight during the first half of

2012 were related mainly to air-sea heat fluxes. The re-

gime changes shown in Fig. 16 suggest that the water

temperature anomalies may have been related to the

preferential expression of negative EP/NP phases that

set up atmospheric patterns conducive to generating

anomalously warm water temperatures. Consistently,

for January and February of 2012, the EP/NP index was

strongly negative, the January index equal to21.92 and

the February index equal to20.33 (Fig. 5). For January,

the index corresponds to the second strongest negative

January EP/NP index since 1950 behind the January

1964 index of 21.95. According to the correlation

analysis results shown in Fig. 7 and Table 1, the negative

EP/NP phases should have contributed to warmer-than-

normal LIS water temperatures in the of spring 2012 in

agreement with Chen et al. (2015), who showed that the

spring water temperature anomalies were related to

winter atmospheric circulation anomalies. The record

negative March 2012 EP/NP index of 22.59 (Fig. 5)

suggests that atmospheric forcing enhanced the preex-

isting anomalies. The cumulative anomaly analysis

supports the conclusion that the March 2012 event may

have been related to a North Pacific regime shift that

enhanced the probability of occurrence of atmospheric

conditions favoring mid-Atlantic Bight warming.

As shown by Pershing et al. (2015), the PDO index is a

good predictor (r 5 20.67) of summer water tempera-

ture across the Gulf of Maine. The result is similar to

that found in the present study, where the PDO is also a

good predictor of summer LIS water temperature. The

similarity between the results is consistent with how LIS

water temperature is strongly correlated with air tem-

perature across the U.S. Northeast (Fig. 1b) and water

temperature across the Gulf of Maine (Fig. 6). The

correlation between LIS water temperature and water

temperature across a large coastal region is not sur-

prising given the large spatial scale of the EP/NP pattern

(Fig. 7c) and the dominant influence of the EP/NP pat-

tern on U.S. Northeast temperature variability (Schulte

and Lee 2017). The correlation between LIS water

temperature and water temperature around the Gulf of

Maine could mean that the wintertime EP/NP pattern

could also influence Gulf of Maine water temperature.

Given that the PDO and EP/NP indices are highly cor-

related, the summer water temperature–PDO relation-

ship identified by Pershing et al. (2015) could actually

reflect the EP/NP influences onU.S temperature and the

underlying North Pacific SSTs. Indeed, studies suggest

that the atmosphere drives the PDO variability rather

than the PDO drives the atmospheric variability. Future

work is needed to better understand the precise mech-

anism that relates the PDO to LIS and Gulf of Maine

water temperature variability.

The results from this study may have important im-

plications for understanding how biological communities

in theLISmay respond to large-scale climate patterns.As

noted by previous studies, the PDO shifted prominent

sign in 1976, 1989, and 1997, marking North Pacific cli-

matic regime shifts (Hare and Mantua 2000; Hong et al.

2014). Multivariate analyses of LIS finfish abundance

indices identified a shift in spring community structure as

it related towater temperature (Howell andAuster 2012)

and produced two primary year groupings: 1984–98 (cold

period) and 1999–2008 (warm period). Two years after

the 1997 regime shift, the LIS American lobster pop-

ulation dramatically declined (Pearce and Balcom 2005)

and has not fully recovered despite efforts to manage the

harvest. Collie et al. (2008) found biological communities

across the Rhode Island Sound to be related to spring–

summer water temperature. The results from this study

therefore suggest that the biological communities could

also be related to the EP/NP pattern because of the EP/

NP pattern’s strong influence on water temperature

around the LIS region. These studies suggests that bi-

ological communities may be impacted by the PDO and

EP/NP because these patterns are related to LIS tem-

perature variability, as diagnosed in the present study.

The low-frequency relationships between water tem-

perature and the EP/NP pattern pose a challenge in

extrapolating anthropogenic-related LIS water tem-

perature trends. The generally positive PDO index in

the first half of the 34-yr hindcast period would have

contributed to LIS cooling according to the correlation
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analysis, whereas the predominately negative PDO in-

dex in the latter half would have favored LIS warming.

The result is a contribution to overall positive trend in

the LIS temperature record. This modulation mecha-

nism is supported by the mechanism identified by

Trenberth et al. (2014), who showed that an upper-

tropospheric teleconnection pattern resembling that

associated with the PDO is capable of increasing the

odds of regional climate anomalies. It is therefore sim-

plistic to say that the 1979 to 2013 trend in LIS water

temperature is solely due to anthropogenic causes. It is

also important to note that the EP/NP pattern may itself

be influenced by anthropogenic forcing through in-

creases in SSTs, enhancements of tropical convection

across the western Pacific, and the strengthening of the

Alaskan ridge (Wang et al. 2014). Further research is

needed to reliably estimate the anthropogenic impacts

on LIS temperature changes. For example, the capa-

bility of global climate models to reproduce the histor-

ical EP/NP pattern could be assessed and then, if the

historical pattern is well reproduced, additional experi-

ments could be conducted under various greenhouse

gas emission scenarios to diagnose a relationship be-

tween greenhouse gas emissions and the behavior of

the EP/NP pattern.

The results presented in this study provide compel-

ling evidence that LIS water temperature variability is

influenced by North Pacific variability more than by

North Atlantic variability. The results suggest that fu-

ture work should focus on understanding North Pacific

phenomena, particularly the response of North Pacific

atmospheric phenomena to climate change, as such

information could prove most useful in understanding

the future of the LIS ecosystem and the future eco-

systems of other temperate estuaries in the U.S.

Northeast such as the Delaware and Chesapeake Bays.
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APPENDIX

Cumulative Arcwise Testing

The computation of a global wavelet quantity results

in a function g(s) describing how the wavelet quantity

changes with wavelet scale. The graph of g(s) is the set

S5 f[s, g(s)]g. (A1)

The application of the pointwise test at the ai level

results in the subset of the graph

S
i
5 f[s, g(s)]: g(s).F

i
(s)g, (A2)

where Fi(s) is the critical level of the pointwise test as-

sociated with the significance level ai. A significant arc ai
corresponding to ai is a contiguous (no gaps) subset of Si

such that there is no larger contiguous subset containing

it. Intuitively, arcs are isolated pieces of the graph Swith

no gaps or breaks.

The application of the pointwise significance test at N

pointwise significance levels a1, a2, . . . , aN results in

the nested sequence of arcs (referred to as a geometric

pathway, hereafter)

a
1
� a

2
� . . . � a

N
, (A3)

where the geometric pathway has length N and aN is

the last element of the geometric pathway. Because

global peaks widen with increasing wavelet scale as a

result of the underlying reproducing kernel (Maraun

and Kurths 2004) it is important to compute the log-

arithm (base 2) of the wavelet scales before computing

the arc length. Furthermore, one can normalize

the computation of arc length by dividing g(s) by F1(s).

Thus, Si in the normalized coordinate system is

given by

S
i
5

��
log

2
s, g(s)

�
F
1
(s)

�
: g(s).F

i
(s)

	
. (A4)

This normalization allows one to readily compare peaks

at different scales and between global spectra associated

with different time series. Associate to each aj the

quantity gj defined as the cumulative normalized arc

length of the last N 2 j 1 1 elements of a geometric

pathway with length N. The output of the arcwise

testing procedure is the largest member of the geo-

metric pathway such that its test statistic exceeds the

critical level of the test gcrit. The largest member is the

one with the greatest arc length. The critical level of

test is calculated in a similar manner to the two-

dimensional case but area is replaced by arc length.

The arcwise test was applied at the 5% significance

level using pointwise significance levels ranging from

0.02 to 0.12, the spacing between adjacent significance

levels equal to 0.02.
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